http://oops.cs.columbia.edu/data/ Webof images and videos of unusual situations such as: out-of-context objects [1]; dangerous, but rare pedestrian scenes in the ‘Precarious Pedestrians’ dataset [5]; and unintentional actions in videos in the ‘OOPS!’ dataset [3]. The EPIC-KITCHENS video dataset [2] is the closest video dataset related to ours, where actions are also
Self-supervised Learning for Unintentional Action Prediction
Web28 de jun. de 2024 · First, we experiment on detecting unintentional action in video, and we demonstrate state-of-the-art performance on this task. Second, we evaluate the representation at predicting goals with minimal supervision, which we characterize as structured categories consisting of subject, action, and object triplets. Web16 de nov. de 2024 · The proposed model benefits from a hybrid learning architecture consisting of feedforward and recurrent networks for analyzing visual features of the environment and dynamics of the scene. Using ... fishy urine smell woman
lalita devadas Department of Computer Science, Columbia …
Web3 de dez. de 2024 · The proposed Memory-augmented Dense Predictive Coding (MemDPC), is a conceptually simple model for learning a video representation with contrastive predictive coding.The key novelty is to augment the previous DPC model with a Compressive Memory.This provides a mechanism for handling the multiple future … Web20 de ago. de 2024 · Predicting Unintentional Action in Video [CVPR 2024] Distilled Semantics for Comprehensive Scene Understanding from Videos [CVPR 2024] M-LVC: Multiple Frames Prediction for Learned Video Compression [CVPR 2024] Web14 de fev. de 2024 · In this and the next sections, we present our framework to study unintentional actions (UA) in videos. First, we provide an overview of our approach in Sect. 3.1.In Sect. 3.2 we detail T \(^2\) IBUA for self-supervised training, and then in Sect. 4 we describe the learning stages for our framework. Notation: Let \(X \in \mathcal {R}^{T … candy you can eat on keto diet